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Abstract 

The number of perfect matchings for the linear 2 X2 X n cubic lattice was 
analytically derived by diagonalizing the skew-symmetric 4n X4n determinant, 
whose non-zero off-diagonal elements are eRher ± 1 or ± i (pure imaginary number). 
The basic formulation involving the matrix manipulation follows that of Kasteleyn, 
but the result obtained in this paper is the first example of the analytical solution 
for a special case of the three-dimensional Ising model. 

1. I n t r o d u c t i o n  

A Kekul4 structure for a given unsaturated hydrocarbon molecule is in graph 
theory called a perfect matching pattern for the graph corresponding to the carbon 
atom skeleton of that molecule [1]. All the component N ( = 2 m )  vertices of the 
graph are spanned by a set of m disjoint edges in a perfect matching pattern. Both 
the adsorption of dimer molecules as oxygen on metal surfaces composed of two- 
dimensional periodic arrays of metal atoms (dimer statistics) and the nearest-neighbor 
spin interaction in antiferromagnetic crystals (Ising model) lead to identical counting 
problems of maximum matching for a given graph for deriving the partition func- 
tion [2]. Thus, an efficient algorithm for obtaining the maximum matching number 
can contribute to various fields of science in addition to its mathematical importance. 

*To whom all correspondence should be addressed. 
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In 1961, Kasteleyn [3] and Temperley [4] independently derived the rigorous 
expression (1) for the number of perfect matchings on the m x n square lattice by the 
use of skew-symmetric matrices and a combinatorial technique: 

( )] 22ran [ ~  [-]" r c o s 2 [  ka  ITr K(2m x 2n) = + COS 2 
• k = l  = 2 m + l  2 n + l  ' 

(l) 

where the symbol K signifies the perfect matching number [ 5 - 8 ] .  One of the present 
authors (HH) derived recursion formulas for the number of perfect matchings for 
several series of potyomino graphs [1,2] by using an operator technique [9] such as 

K ( 2 x 2 x n ) = K % = 3 K  n_l +3K,,-2 - G - 3  , (2) 

and 

K(2 x3 x n) = K n = 6Kn_ 1 + 21Kn_ 2 - 42Kn_ 3 - 89K n_4 + 68Kn-s 

+ 89Kn_6: - 42Kn-7 - 21Kn-s + 6K;,_9 + Kn-,o" (3) 

Equation (2) was later confirmed by Hock and McQuistan [I0] .  For the former 
series of graphs, the following expression was found to hold from trial-and-error 
calculations [I ] • 

I (31 (")l K(2x2xn)= _ 2 2 cos 2 + cos 2 + cos 2 ~ . (4) 

The aim of the present paper is to derive eq. (4) with the use of skew-symmetric 
matrices and also to show the validity of eq. (2). The final goal of this line of study 
is to derive in closed form, as in eq. (4), the number of perfect matchings for the 
network of the t x m x n simple cubic lattice. A number of related problems are also 
discussed. 

2. T h e o r y  

Before going into our analysis of the three-dimensional cubic lattice, a brief 
summary of  the method established in the two-dimensional dimer problem is 
presented [3,4,11,12].  Suppose we have a square lattice with m x n (with even m) 
points and the assigned coordinates (j,  k) as given in fig. 1. The numbering p of the 
lattice point (j, k) can be chosen as 

( / ,  k) *-. p = m ( k  - 1) + / .  (S) 
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(1,n) (2,n) (3,n) (m,n) 

(j,!.l) (j.l,k+l) 

,2) (2,2) (j,k) (j.l, k) 

I 
(1,1) (2,1) (3,1) (m,1) 

Fig. 1. Coordinates (j, k) of the lattice points in the m X n 
squaxe lattice with even m. The set of double bonds 
represents a peffect matching or a Kekulé pattern. 

Any of the allowed configurations C of placing dimers on the lattice lines of Kekulé 
patterns can be expressed as 

C = [p l ;p21p3;p4 Ips ;p61  . . .  [Pmn-1; Pmn I 

with the following restrictions (canonical ordering): 

Pl < P2 ; P3 < P4 ; . . • Pmn - 1 < Pmn ; 

P, < Pa < Ps < .  • • < Pmn - 1 • 

(6) 

It is shown that if we define the following assignment to the triangular array of 
• ! elements D ( p , p  ), the Pfaffian P f ( D )  gives the exact number of the perfect matchings 

of the given lattice : 

D ( / , k ;  j + l , k )  = 1 

D ( j , k ;  j, k + 1) = ( - 1 )  / 

D ( j ,  k; j', k ')  = 0 

for l <~ ] <~ m - 1 ,  l <~ k <~ n 

for l < ~ ] < m ,  l ~ < k ~ < n - 1  (7) 

otherwise (for non-bonding pair ] < ]', k < k ' )  

Next, let us expand the Pfaffian D into a skew-symmetric matrix with elements 

D ( j , k ;  j ' ,k ' )  = - D ( j ' , k ' ;  j , k )  and D ( j , k ;  j , k ) =  O. 

Then the determinant of D becomes equal to the square of P f ( D ) ,  namely 

det(D) = Pf=(D).  

(8) 

(9) 
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Note that, in order for Pf(D)  to represent the exact value of the perfect matching 
number K, the product of the matrix elements of D for any square P/PkPtPm should 
be equal to - 1 , o r  

D(pj;  pk)D(Pi;  pt)D(pk; Pm )D(Pt; Pm ) = -1 .  (lO) 

The result (1) can be obtained by diagonalizing det(D). 

3. Polycube la t t ices  

The three-dimensional polycube lattice (2 x 2 × n) turns out to be a planar 
graph, and thus we can use the relation K = Pf(D).  The lattice point is denoted by 
(/,  k, l) and numbered according to 

( j , k , l )+ -+p  = / +  2 ( k -  1) + 4 ( / -  1), 

as in fig. 2. Following the two-dimensional case, the matrix elements of this lattice 
can be chosen as 

I 
D ( j , k , l ; j +  1, k , l )  = x  

D ( j , k , l ; j , k + l , 1 )  (-11)/3' ( j , k = l , 2 ; l = l ~ n )  (11) 

D ( j , k , l ; j , k , l +  1) z .  

We need to follow the restriction (10) for any square in the lattice. This can be done 
by setting 

x = l ,  y = l ,  

a s  

and z = i ,  (12) 

x2 .y ( - )  ,) = x2z 2 = y2z2 = ( - y ) 2 z 2  = -1 . 

Now, by using the three kinds of matrices E, F, and Q as chosen by 
Kasteleyn [3], the skew-symmetric interaction matrix D for the 2 x2 x n lattice 
can be expressed in terms of their direct product sum as 

D2,2 ,  = x Q2 x E2 X En + Y Fz x Q2 x En + z E2 ×E2 × Qn , (13) 

with 
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(1,2,n) x (2,2,n) 

x « 
\ / 

\ / 

"~(1,2,2) x ( 2 , 2 , 2 ) /  

(1,2,1) (2,2,1) 

-Y -Y -YJ x [Y Y Y 
J (1,1,1) (2,1,1) 

X 

(2,1,2~ 
, /  " , \  

/ \ 

/ x \ 
(1,1, n) (2,1,n) 

Fig• 2. Coordinates (/, k, l) of the lattice points in the 
2 X2 X n cubic lattice and the propefly assigned skew- 
symmetric matrix elements fo[ each line as in eq, (11). 
Note that these numbers refer to the oft-diagonal term 
corresponding to (Pa, Pb )' with Pa < Ph" 

1 

0 

E,,= 0 

0 0 0 

1 0 0 

0 1 0 il Fù = 

/ - 1  

0 

0 

0 0 

1 0 

0 - 1  

O . , . 

0 

°ii ( -  

Q r t  ---- 

/ 0  1 0 

- 1  0 1 

0 - 1  0 00 ~'t 1 (14) 
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In the appendix, an example of the D matrix is given for the case where 
n = 3. The 4n x 4n matrix can be nearly diagonalized by the use of unitary matrix 

Un and its inverse U£- 1 as 

with 

D2,2,n = v2-' x W '  x V2'D~,~,,, U~ x U~ x G 

=xUf'Q2U 2 x U f ' E 2 U  2 x UnlEnUn 

+ y U ~ '  F2U 2 x W'Q2U2 X Un 'EnU n 

+ z b~- I E2 U2 x Uf  ' E2 U2 x Un ' Qn U n, (15) 

bn(J,k ) = ~/. 2la 
jkrr 

i Js in  
+1  n + l  

L~-l(j,k) = 
jk~r 

( - i )  k sin 
n +1 

(16) 

In fact, the D matrix is factorized into 2n 2 x 2 matrices since 

where 

I 1 ~ H (N~ - L~ - M?)  , det(D2'2'n) = k = l  

L 1 = x X 1 = 2x cos(~/3) 

B~l = )'~1 = 2y cos(~/3) 

N k =zu k = 2 z c o s ( k ~ / ( n +  1)). 

(17) 

(18) 

An example is given in the appendix for the case where n = 3. Here, Xl, #x,  and u k 
are, respectively, the solutions of  the first, second, and third terms of  eq: (15). In 
particular, u k is the k th  solution of  the characteristic polynomial of  the path graph, 
or linear polyene with n. X k and tz k are the solutions for the special case where n = 2, 
and in deriving eq. (17), the relations X 1 = - X  2 and/a  I = - # 2  were used. 
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Now we have 

K(2 x 2 x n) = [det(D2,2,n) ] 1/2 

?1 

1--I 22 [ -z  2 cos z ~ +x 2 cos2(rr/3) +y2 cos 2 (fr/3)] .(19) 
k = l  

By setting x = y = 1 and z = i, we obtain the rinal result, 

/'l 

K ( 2 x 2 x n ) = 2  n 1 +2cos  2 . 
= n + l  

(20) 

Next, we show that eq. (20) satisfies the recursion formula (2). Equation (20) 
can be converted to 

n 

K,, = Vl 
k = l  

[4 + 2 cos(2krr/(n + 1))] . (21) 

By using the formula of finite product of trigonometric functions [13], we can 
convert eq. (21) into the following expression [10] " 

t~ 

~ = I q  
k = l  

[u 2 + v 2 - 2uv cos(2kTr/(n + 1))] 

= [ Œ 2 ( n + l )  _ 2 / , / n + l  v n + l  + o 2 ( n + l ) ] / (  u _ 0 )2  

with 

= (u n+l - v n+l)2/(u - v) 2, (22) 

u 2 + v  2 = 4  and uv = - 1 .  

By using the last expression of eq. (22), it is straightforward to derive the 
recursion formula (2). 

We have thus shown the general expression of the perfect matching number 
of a special case of the three-dimensional rectangular lattice. One of the break- 
throughs shown to be useful in this paper is the use of pure imaginary numbers for 
assigning the weights of particular edges of a graph in decomposing the determinant. 
This is potentially relevant for the derivation of the matching polynomial of a graph 
by decomposing the determinant of the associated edge-weighted graph [14]. 
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Although Little [15] proved that we can generalize Kasteleyn's theorem 
eren to non-planar graphs, he did not give any general expressions. Our next aim 
is to defive the general expressions of  the perfect matchings of  2 x 3 x n and larger 
lattices. 
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A p p e n d i x  

(1) Example of D matrix for 

0 x - y  

- x  0 0 

y 0 0 

0 - y  - x  

/)2,2,3 = 

0 

Y 

X 

0 

t h e 2 x 2 x 3 1 a t t i c e ( x  = y  = 1 , z = i ) .  

- z  0 0 0 

0 - z  0 0 

0 0 - z  0 

0 0 0 - z  

0 0 0 0 

0 0 0 0 

0 0 0 0 

0 0 0 0 

z 0 0 

0 z 0 

0 0 z 

0 0 0 

0 X - y  

- x  0 0 

y 0 0 

0 - y  - x  

- z  0 0 0 

0 - z  0 0 

I 0 0 - z  0 

I 0 0 0 - z  
I 

0 

0 

0 

z 

0 

y 0 

x 0 

0 0 

0 

- -X  

Y 
0 

0 0 0 0 

0 0 0 0 

0 0 0 0 

0 0 0 0 

z 0 0 0 

z 0 0 

0 z 0 

0 0 z 

x - y  0 

0 0 y 

0 0 x 

- y  - x  0 

(2) 

02,2,3 = 

Example of  the nearly diagonalized D matrix for the 2 x 2 x 3 lattice. Note 

that N i is imaginary. 

L~ +N~ M2 
342 L2 +N1 

L2 +N2 

JLI +N2 342 
0 IM= L2+N2 

L 1 +N1 Mx 

M1 L2 +N1 

L1 + N Œ  

MI 

L1 + N 3  • • , 


